Simulating a Multi-target Acoustic
Array on the Intel Paragon

o DTIC
ERELECTE ™

Charles A. Jones

Technical Report No. 108

for pu‘b}:i;c tzleose and sale; its
distribution is unlimited,

(e iy

[N A N]
*mds dosument nas besn approved

Center for
Computational
Statistics

- Tha i votind suing e L e ‘Tl 4 I fulh 0

L T mssatings st Myduus 1 o 1 v el o Sunae f Wyt &

10 g § S 9 20 s e pwplie & The Basar e ¥ 3

October, 1994

19941201 024

George Mason University
Fairfax, VA 22030

CENTER FOR COMPUTATIONAL STATISTICS
TECHNICAL REPORT SERIES (RECENT REPORTS)

TR 93. Winstor C. Chow, Modeling and Estimation with Fractional Brownian Motion and Fractional
Gaussian Noise {Ph.D. Dissertation), February, 1994.

TR 94. Mark C. Sullivan and Edward J. Wegman, Correlation Estimators Based on Simple Nonlinear
Transformations, February, 1994, To appear IEEE Transactions on Signal Processing.

TR 95. Mark C. Sullivan and Edward J. Wegman, Normalized Correlation Estimators Based on
Simple Nonlinear Transformations, March, 1994.

TR 96. Kathleen Perez-Lopez and Arun Sood, Comparison of Subband Features for Automatic
Indexing of Scientific Image Databases, March, 1994.

TR 97. Wendy L. Poston and Jeffrey L. Solka, A Parallel Method to Maximize the Fisher Information
Matrix, June, 1994.

TR 98. Edward J. Wegman and Charles A. Jones, Simulating a Multi-target Acoustic Array on the
Intel Paragon, June, 1994.

TR 99. Barnabas Takacs, Edward J. Wegman and Harry Wechsler, Parallel Simulation of an Active
Vision Model, June, 1994.

TR 100. Edward J. Wegman and Qiang Luo, Visualizing Densities, October, 1994.
TR 101. Daniel B. Carr, Converting Tables to Plots, October, 1994.

TR 102. Julia Corbin Fauntleroy and Edward J. Wegman, Parallelizing Locally-Weighted Regression,
October, 1994.

TR 103. Daniel B. Carr, Color Perception, the Importance of Gray and Residuals on a Choropleth
Map, October, 1994.

TR 104. David J. Marchette, Carey E. Priebe, George W. Rogers and Jeffrey L. Solka, Filtered Kernel
Density Estimation, October, 1994.

TR 105. Jeffrey L. Solka, Edward J. Wegman, Carey E. Priebe, Wendy L. Poston and George W.
Rogers, A Method to Determine the Structure of an Unknown Mixture Using the Akaike Information
Criterion and the Bootstrap, October, 1994. A

TR 106. Wendy L. Poston, Edward J. Wegman, Carey E. Priebe and Jeffrey L. Solka, A Contribution
to the Theory of Robust Estimation of Multivariate Location and Shape: EID, October, 1994.

TR 107. Clifton D. Sutton, Tree Structured Density Estimation, October, 1994.

TR 108. Charles A. Jones, Simulating a Multi-target Acoustic Array on the Intel Paragon (M.S.
Thesis), October, 1994.

Simulating a Multi-target Acoustic Array on the Intel Paragon

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Statistical Science

at George Mason University.

Charles A. Jones
Doctor of Philosophy, Dartmouth College, 1978

Accesion For

DTIC TAR
Uniannounced I}

. . ustificatinr
Director: Dr. Edward J. Wegman Justification

Dunn Professor of Statistics By

\
NTIS CRA&I N
g

Center for Computational Statistics Distribution /

Summer 1994
George Mason University

Fairfax, Virginia

il

Acknowledgements

I dedicate this thesis to my parents, Chester and Kathleen Jones. They are
wonderful people and they have always encouraged and supported me.

There are many people who made the completion of this thesis and my year of
learning statistics rewarding and enjoyable. Foremost, I give my sincerest thanks
to Dr. Edward J. Wegman for his guidance throughout my work on this project.
I would also like to thank him for awarding me a graduate research assistantship,
which allowed me to fully concentrate my efforts on learning statistics and on this
thesis. In addition, Drs. John J. Miller, Clifton D. Sutton, and Daniel B. Carr
taught excellent courses, which provided me with an outstanding foundation in
statistics.

I also thank Duane King, Jim Turtora, and Qiang Luo for their outstand-
ing administration of the computer systems and their prompt attention to my
individual questions and requests.

Finally, I would like to thank Anita, Ben, and Daniel for being a marvelous

family. Their love and support mean the world to me.

The computational effort for this research was performed on an Intel Paragon,
which was purchased under contract N00014-93-1-0527 with the Office of Naval Re-
- search. My research assistantship was funded under an AASERT grant attached
to the Army Research Office Contract DAAL03-91-G-0039.

Table of Contents

Acknowledgements e

Listof Figures. i i

Abstract

1 Introduction i i i e e e e

1.1
1.2

The Physical Situation being Simulated
A Brief Overview of Signal Processing

2 The Simulation ittt e e e

2.1 The Functionality of the Simulation
2.2 The Flow of Data Among the Nodes
23 What EachNodeDoes
24 Interesting Parallel Programming Issues
2.5 Comments on Performance
83 Testing and Visualization
3.1 Testing Goals and Techniques
3.2 Simple Test Cases
3.3 A Sample Test Case
Bibliography e

A The Source Code for the Simulation and Related Files . .
B Verbose Output to Illustrate the Time Delay Example . .

C Parameters for Sample Test Case

iii

NN O W e

S W LW DN e e = e
o= O s 00NN N O O

72

1.1

2.1
2.2

2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

List of Figures

Sample Layout of Positions of Targets and Hydrophones

Flow of data during each timecycle

Time Delay Example — Physical Layout, Distances, and Time De-
lays . . . o e e
Time Delay Example — Only 1 Target
Time Delay Example -2 Targets
Time Delay Example — All 3 Targets

Simple Narrow-band Signal
Three Test Cases e e e e e e e e e
Graph Illustrating Test 3
Graph Illustrating Test 3
Entire Recording at Hydro 0
Periodic Structure and Impulsive Noise
Transient Target Noiseo
Entire Recordingat Hydro 1
Transient Target Noise Revisited

v

Abstract

SIMULATING A MULTI-TARGET ACOUSTIC ARRAY ON THE INTEL
PARAGON

Charles A. Jones, Ph.D.

George Mason University, 1994

Thesis Director : Dr. Edward J. Wegman

This thesis is built around a parallel programming project which simulates
the recordings of a linear array of hydrophones in the presence of several sources
of acoustic signals (targets). Simulation of multi-target data with appropriate
modeling of multipath, path refraction, and local and distant noise sources is
a useful and relatively sophisticated modeling chore. The signal suites include
multiple frequency narrow band signals, broad-band flow noise, and randomly
generated transient signals. The noise suites include coherent and incoherent
Gaussian noise, impulsive noise, and continental shelf reverberation.

This project is of interest from a parallel programming viewpoint because it
uses the Paragon as a true Multiple Instruction Multiple Data (MIMD) machine
with three types of nodes: 1) a Manager node, 2) target nodes, and 3) hydrophone
nodes. The target nodes are responsible for generating the signal suites, transient
noise, and the coherent noise. The hydrophone nodes are responsible for calcula-
tion of multipath, refraction and time delay as well as adding the local incoherent
noise suite. While this simulation can be used as a stand-alone application, it also
will form the foundation for a much larger, more sophisticated simulation, namely

producing a virtual Command Information Center (CIC). The larger simulation

vi

will involve the hydrophone nodes directly passing their simulated recordings to
array processing nodes running beam forming and other signal processing algo-
rithms in an attempt to locate and identify the simulated targets. The output
from these nodes will then be sent via a HIPPI Channel to our Virtual Reality

Lab, where the information will be graphically displayed, thus producing a virtual

CIC.

Chapter 1

Introduction

1.1 The Physical Situation being Simulated

This project simulates a linear array comprised of up to 30 acoustic hydrophones
and up to 15 targets. Each target produces a suite of narrow-band harmonic
signals. These signals are produced by rotating equipment on board the target. In
addition, at each target the project simulates broad-band flow noise and transient
noise. The flow noise is due to the movement of the target through the water and
propulsion noise. The transient noise simulates infrequent events such as ballast
operations or hatches being opened.

Each of the hydrophones records the signals it receives from all targets and,
more predominantly, ambient noise. This noise is modeled with two components:
incoherent white noise (Gaussian) and occasional, loud, local, short duration,
impulsive noise. The white noise component reflects continual ambient sounds
and any additions to the signals due to the hydrophone itself. The impulsive
noise models local noise such as animal sounds near the hydrophone. This project
simulates each hydrophone recording 1000 observations per second.

While the hydrophones are arranged in a straight line, the targets are arranged

arbitrarily. (See figure 1.1.)

Target 3

Target 1

Target 2

Target M

Figure 1.1: Sample Layout of Positions of Targets and Hydrophones

1.2 A Brief Overview of Signal Processing

This simulation produces a discrete sequence of real numbers at each of the hy-
drophone nodes. These sequences are meant to mimic the discrete-time sampling
by actual hydrophones of the continuous-time signals being received from the tar-
gets. There is a vast literature on the general problem of discrete-time, digital,
signal processing, see, for example, Oppenheim and Schafer [2] and Stearns and
David [4]. The purpose of this section is to outline some types of signal process-
ing procedures that can be undertaken to recover the location and classification of
the targets based on the hydrophones’ sampling. See Pillai [3], Hall [1], Wegman
and Smith [5], and Wegman, Schwartz, and Thomas [6] for detailed discussions of

multi-sensor signal processing.
Univariate Procedures

Univariate procedures fall into three categories: detection, estimation, and
classification.

Detection procedures, as the name implies, attempt to detect the presence of
a target signal in the midst of the ambient noise. Typically, they consist of a
statistical hypothesis test with null hypothesis: there is a target signal embedded
in noise. The alternative hypothesis is: there is just noise. Thus, the status-quo
is the presence of a target. The burden of proof is on the statistical procedure to
give strong evidence of no target. This choice of null and alternative hypotheses
allows the type I error rate (which can be set at any desired level) to correspond
to the probability of missing an existing target. Nondetection of an existing target
can obviously be quite serious from a tactical standpoint; this hypothesis scheme
gives control of the probability of making such an error. On the other hand,
in this scheme, type II errors correspond to false alarms. While not as serious
individually, large numbers of these errors could adversely effect the quality of

the response to all detections (false or not). As is usually the case, statistics

illuminates the consequences of decisions that must be made.

Estimation procedures traditionally attempt to determine the frequencies and
amplitudes of the narrow-band portions of a signal, given that a target exists.
A standard assumption about a target signal is that it contains a narrow-band
frequency suite consisting of sinusoids. These sinusoids are produced by rotating
equipment; examples of such equipment are electrical generators, winches, air
conditioning blowers, engines, transmissions, and propeller shafts. Good estimates
of these frequency suites are vital to identifying the target. In addition, the
frequencies of the drive-train equipment can give an estimate of the speed at which
the target is moving. The obstacle to determining these frequencies is the presence
of noise. Traditionally, the noise is assumed to be Gaussian distributed with mean
= 0 and constant variance. The basic estimation technique is to perform regression
using trigonometric polynomials.

Classification procedures attempt to identify the target based on the signal
analysis. Examples of types of identification would be to determine whether the
target is a friend or foe, and more specifically whether that the target belongs to
a specific class of submarine. The classic example of a friend or foe identification
technique is to use the frequency of the electrical generator; United States ships
operate with 60 Hertz generators, while almost all other countries use 50 Hertz.

In general, these procedures involve data base and pattern matching techniques.

Multiple Sensor Array Processing

The standard technique in the multiple target situation when there is an array
of hydrophones is called beam forming. The basic concept of this technique is to
average the sampled signal value from each hydrophone using time delays that are
based on the assumption that the target is at a particular angle. The target signal
should then be enhanced, since (if the time delays are accurate) each hydrophone
is receiving the same signal value from the given target. On the other hand, the
noise components will to some extent cancel each other out since they should

be incoherent (not synchronized in any way) at the various hydrophones. More

precisely, given the assumption that the noise at each hydrophone is independent
identically distributed (iid) from N(0, 02), the average of n independent noises will
be distributed as N (0, 62/n), where n = the number of hydrophones. Thus, the
signal-to-noise ratio is increased by a factor equal to the number of hydrophones.
There are sophisticated techniques which attempt to also minimize the effects of
the signals from other targets. Thus, the beam former has identified the direction
in which one of the targets lies and has produced an enhanced target signal which
can then be analyzed by the univariate techniques. (Of course, the quantities
involved aren’t exact and so statistical techniques are utilized heavily.)

Naturally, there can be difficulties in this scheme. For example, impulsive
noises (such as ice cracking, off-shore drilling platforms, or various animal noises)
are very problematic. These high energy noises violate the assumption of iid
Gaussian noise, producing what is referred to as a contaminated normal model. In
these situations, robust estimation techniques are used. One such technique is the
Huber M-estimate, which essentially “Windsorizes” the signal so that the outliers
produced by the impulsive noises do not have undue influence. Our simulation
includes impulsive noise generation, so will allow testing of procedures dealing
with this problem.

There are variants of these schemes which perform such tasks as detection
and location of targets based on broadband or transient noises (both of which
are generated by the targets). The broadband noise is assumed to be Gaussian,
but the successive pulses are highly correlated. Such noise is realized as the flow
noise due to the movement of the vessel through the water. Transient noises
are (as the name implies) of finite duration and are due to irregularly occurring
events on the target such as hatches being opened. Since they are generated on
the target and typically have fairly short duration, recognizing this noise gives
valuable information about the location of the target. This simulation includes

generation of these two types of noises as well.

Chapter 2

The Simulation

2.1 The Functionality of the Simulation

The goal of this project is to produce simulated hydrophone recordings; these
recordings take the form of files (one for each hydrophone) which contain real
numbers written in ASCII format. These real numbers represent acoustic signals
which have been sampled at the rate of 1000 times per second. This sampling
rate will allow subsequent programs to detect periodic signals of up to 500 Hertz.
Besides the periodic signals representing narrow-band frequency suites from the
targets, the recordings will contain transient target noise and multipath signals
representing the target signals reflecting off the ocean floor or surface. Addi-
tionally, local to each hydrophone, Gaussian white noise and impulsive noise are
added to the recording. These local noises are often the dominant portion of the

recording.

2.2 The Flow of Data Among the Nodes

During the simulation, the Paragon functions as a true Multiple Instruction, Mul-
tiple Data (MIMD) machine with three types of nodes. There is a single manager
node, a node for each hydrophone, and a node for each target. During each
of the simulated time cycles (representing 1/1000 of a second), separate signal
pulses are passed from each target node to all of the hydrophone nodes. Also,
the manager node passes synchronization messages to each target node and re-
ceives synchronization messages from each hydrophone node. So, in addition to
using the Paragon as a MIMD machine, the simulation makes extensive use of the
Paragon’s message passing capabilities.

The manager node initially solicits and reads the various user inputs con-
cerning the number and locations of the targets, the number and locations of
the hydrophones, and the noise generation parameters. The manager node then
synchronizes the time cycles. Figure 2.1 diagrams the flow of data which occurs

during each time cycle.

2.3 What Each Node Does

The Manager Node solicits and reads the user inputs concerning the numbers and
locations of the targets and hydrophones. Between inputs, the manager node also
computes a matrix of distances between hydrophones and targets, followed by
a matrix of time delays which the hydrophone nodes will use to account for the
differing arrival times of the signals from the various targets. Using the time delay
information, the manager node then runs the simulation for the necessary number

of time cycles as a warm-up period to coordinate the simultaneous arrival at a

MANAGER

Synchronization

<—-
Messages

Target 0 Target 1 Target M

Signal
Pulses

Recording
<= Signals

files: hydroO.out hydroN.out

Synchronization
Messages

MANAGER

Direction of flow is downward.

Figure 2.1: Flow of data during each time cycle

given hydrophone of signals that originated at different times. Subsequently, the
manager node synchronizes the actual simulation, which runs for the user-specified
number of seconds.

The Target Nodes initially receive the user inputs they need and perform
some initializations, mainly involving random number generation (which is used
for producing the noise components of the signal). The Gaussian random number
initialization consists of simply reading from a file an array of precomputed stan-
dard normal random numbers. Subsequently, random numbers from a Gaussian
distribution with specific mean and standard deviation are produced by multi-
plying by the standard deviation and adding the mean. During the simulation,
a target node generates its narrow-band harmonic frequency suite, broad-band
noise, and occasional transient, damped harmonic noise. The combined signal
pulse is then sent to each hydrophone node.

The Hydrophones Nodes initially receive the user inputs they need and perform
some initializations, again mainly involving random number generation. Each
hydrophone node also opens a file for recording and initializes an array for properly
temporally assembling the signals, most of which arrive “at the wrong time.”
During the simulation of the time cycles, the messages containing the signal pulses
are placed in the array based on the time delay matrix. As the array is being
written to the file, the incoherent Gaussian noise and the occasional impulsive
noise are added. In the future, when this project serves as the basis for the
virtual CIC project, the array values and added noise will be sent as messages to

array processing nodes.

10

2.4 Interesting Parallel Programming Issues

The challenges in this parallel program lie in two areas. First, the parallel pro-
gramming and communication among the nodes takes careful planning and test-
ing. This project was developed incrementally. After the user input section was
written, the remaining nodes simply received these values from the Manager Node
as messages. When this basic communication was functioning correctly, the main
loop and the synchronization messages were added, with the nodes still not doing
any “useful” work. Next, the features were added and tested one at a time. First,
the target nodes generated constant signals and passed those to the hydrophone
nodes. Then the targets generated the narrow-band signal suite, which is just a
cosine polynomial with frequencies and amplitudes as specified by the user. The
remaining features added were white noise at the hydrophone nodes, impulsive
noise at the hydrophone nodes, transient noise at the target nodes, and multipath
calculation (performed at the hydrophone nodes). Adding the features incremen-
tally with the message passing as a stable foundation made the debugging go fairly
smoothly.

The other challenging area was designing the time delay scheme. The time
delays reflect the distances between the hydrophone and target pairs in the physi-
cal situation being simulated. Two observations guided the time delay algorithm.
First, the targets are assumed to be completely independent with regard to the
signals they are producing. Hence, for each target, the time delays for that target
and all of the hydrophones are calculated without regard to the other targets. This
observation greatly shortens the warm-up period. For example, if Target 0 is 2000
meters from Hydrophone 0 while Target 1 is 3000000 meters from Hydrophone 0,
there would be an extremely lengthy period of waiting (over 32 minutes) for the
signal from Target 1 to get to Hydrophone 0 relative to the wait for the signal
from Target 0. By assuming the targets are independent, I can simply assume

that for a given time cycle of the simulation, the signal Target 1 generates was

11

“actually” generated some 32 minutes earlier. Note that since the narrow-band
portion of the signal is periodic and the transient noise occurs at random intervals,
this assumption of independence of the targets is completely consistent with the
physical situation.

The second observation was simply an extension of the first. The algorithm
assumes that the signal pulse generated during a particular time cycle arrives
instantly at the furthest hydrophone from that target. The signal pulse arrives
at the closer hydrophones during earlier time cycles. This time manipulation is,
of course, possible since this is a simulation, not a recording of an actual event.
These signal pulses arriving at “earlier” times is the raison d’etre for the warm-up
period. The warm-up period simply runs the simulation for enough time cycles
so that all of the pulses sent back from subsequent time cycles are present when
the recording of the hydrophone is sent to the file. The source code, of course,
completely specifies the algorithm and can be found in the appendix. However,

the following example illustrates the entire workings of the time delay algorithm.
An Example to Illustrate the Time Delay Algorithm

This example uses two hydrophones and three targets arranged as illustrated in
figure 2.2. There are three parts to this example: first, only Target 0 is considered
(see figure 2.3) ; second, Targets 0 and 1 are considered (see figure 2.4); and third,
all three targets are considered (see figure 2.5). For each part, the simulation lasts

0.01 seconds (10 time cycles).

TarO
Tar 1

Tar 2

Example illustrating how time delays between hydrophones and targets are managed.

This example consists of 2 hydrophones and 3 targets arranged as illustrated below.
There are 3 parts to this example: first, only target 0 is considered; second, targets 0
and 1 are considered; and third, all three targets are considered. For each part, the
simulation lasts 0.01 seconds (10 time cycles).

87.52 N 100m -
NG @

Target
0

1500

Target
1

By using the Law of Cosines, the speed of sound = 1531 m/sec (in sea water), and
1000 time cycles per second, we compute the following table.

Distance Distance Difference Delayin Delay in Relative Relative
toHyd0 toHyd1 indistance insecs timecycles delay HO delayH 1
1000 m 1009.32 9.32 .0061 6 6 0
1500 m 1501.59 1.59 .0010 1 1 0]
500 m 487.34 -12.66 -.0083 -8 0 8

12

Figure 2.2: Time Delay Example — Physical Layout, Distances, and Time Delays

Part A: How the algorithm handles time delays if Target 0 were the only target.
The warm-up period lasts 6 time cycles. Then the simulation lasts 10 time cycles.

In what follows, WO denotes the pulse sent during warm-up cycle 0, W1 denotes
the pulse sent during warm-up cycle 1, etc. A0 denotes the pulse sent during
cycle 0 of the actual simulation, A1 denotes the pulse sent during cycle 1 of the
actual simulation, etc.

In this part, there is only one target, so each element of the sum array consists of
a single pulse from the target.

Only the items enclosed in the rectangles are recorded; the other items are simply
discarded. They occur here only to illustrate the algorithm.

Index Sum Array at Hydrophone 0 Sum Array at Hydrophone 1

-6 wWo

-5 Wi

-4 w2

-3 w3

2 w4

-1 W5

0 A0 Wo
1 A1 w1
2 A2 w2
3 A3 w3
4 A4 w4
5 A5 W5
6 A6 A0
7 A7 A1
8 A8 A2
9 A9 A3
10 A4
1 A5
12 A6
13 A7
14 A8
15 A9

Note that each pulse arrives 6 time cycles later at Hydrophone 1, as expected.

Figure 2.3: Time Delay Example — Only 1 Target

13

Part B: How the algorithm handles time delays when there are two targets,

Target 0 and Target 1. Note that the actual difference in time between the two
targets is ignored. Each target is assumed to be completely independent of the
other targets. For each target, time delays are computed to the various hydrophones,
ignoring the other targets. In particular, for each target and hydrophone pair,

index = cycle - (relative delay). Also note that, in general, the pulses from different
targets are different; e.g., A3 from Target 0 is not equal to A3 from Target 1, except
by an incredible coincidence.

Again, the warm-up period lasts 6 timé cycles, followed by the 10 time cycles of
the actual simulation.

Index Sum Array at Hydrophone 0~ Sum Array at Hydrophone 1

EromTarQ From Tard FromTar0 From Tar1
-6 WO
-5 w1
-4 w2
-3 W3
-2 w4
-1 W5 + Wo
0 A0 + Wi1 WO + WO
1 Al + w2 w1 + W1
2 A2 + W3 w2 + w2
3 A3 + w4 W3 + w3
4 A4 + W5 w4 + w4
5 A5 + A0 w5 + w5
6 A6 + Al A0 + A0
7 A7 + A2 A1l + Al
8 A8 + A3 A2 + A2
9 A9 + A4 A3 + A3
10 A5 A4 + A4
11 A6 A5 + A5
12 A7 A6 + A6
13 A8 A7 + A7
14 A9 A8 + A8
15 A9 + A9

Figure 2.4: Time Delay Example — 2 Targets

14

Part C: How the algorithm handles time delays for all three targets. The warm-up
time for this part lasts 8 time cycles since the largest relative time delay is 8 cycles.

The same notational conventions as in parts A and B still hold.

-8 wo
-7 w1
-6 WO w2
-5 W1 W3
-4 w2 w4
-3 W3 W5
-2 W4 W6
-1 W5 + WO w7
0 W6 + W1 + WO WO + WO + A0
1 W7 + W2 + Wi W1 + W1 + Al
2 A0 + W3 + W2 W2 + W2 + A2
3 Al + W4 + W3 W3 + W3 + A3
4 A2 + W5 + W4 W4 + W4 + A4
5 A3 + W6 + W5 W5 + W5 + A5
6 Ad + W7 + W6 W6 + W6 + A6
7 A5 + A0 + W7 W7 + W7 + A7
8 A8 + A1 + A0 A0 + A0 + A8
9 A7 + A2 + A1 Al + A1 + A9
10 A8 + A3 + A2 A2 + A2
11 A9 + A4 + A3 A3 + A3
12 A5 + A4 Ad + A4
13 A6 + A5 A5 + A5
14 A7 + A6 A6 + A6
15 A8 + A7 A7 + A7
16 A9 + A8 A8 + A8
17 A9 A9 + A9

Figure 2.5: Time Delay Example — All 3 Targets

15

16

2.5 Comments on Performance

For small numbers of hydrophones and targets (3 or so of each), the simulation
currently runs in real time. With larger numbers of hydrophone and target nodes,
the simulation runs slower than real time. I hope this situation improves with some
planned improvements to the code and when the operating system is upgraded to

utilize both processors on each node.

Chapter 3

Testing and Visualization

3.1 Testing Goals and Techniques

Correctness of a computer program is, of course, always desired; hence, testing
should always be a major part of the program development. These maxims are
particularly appropriate here. Given this project is the foundation for the larger
CIC project and can be used to test new CIC modules, it is essential that this
project works correctly. This chapter describes the testing of this project, which
provides strong evidence of its correctness. One caveat: there is no input filtering
performed; it is the user’s responsibility to correctly enter the inputs.

The testing has been accomplished mostly by visualization of the recorded
signals using the visualization package AVS. For some simple cases, the Unix
utilities, diff and split, were used. For one very small simulation (0.01 seconds),
testing was done by inspection of the target outputs, the hydrophone recordings,
and the distances between the pairs of hydrophones and targets. This complete

inspection is quite tedious and is impractical for larger test cases.

17

18

3.2 Simple Test Cases

Simple Harmonic Signal with and without Gaussian Noise

This test case illustrates the effect of white noise. This simple test was run with
only one target and one hydrophone. Originally, the target emitted a narrow-band
signal formed by the following frequency and amplitude pairs: (10,10) and (20,20).
Since the periods (in time cycles) are 100 and 50, respectively, the overall period of
the combined harmonic signal is 100, as can be seen in figure 3.1. The simulation
was run with no noise. Then the simulation was repeated with Gaussian noise

having mean = 0 and SD = 10. The two resulting recordings were overlaid as

shown in figure 3.1.

Time Delay Example

Appendix B contains a complete listing of output which tests the algorithm
given in the time delay example of the previous chapter. The simulation was
modified to produce additional output so the signals produced by the targets can
be assembled as diagramed in figures 2.3, 2.4, and 2.5. This target output was
assembled and checked against the hydrophone recordings by hand; the tedious

arithmetic details are omitted here.

Three Test Cases

Figure 3.2 diagrams three simple test cases. None of these test cases uses local
noise; in this way, the only signal is that from the target. So, the only difference
in the recordings of Hydrophone 0 and Hydrophone 1 is a shift in time. The first
test case simply tests the time delay algorithm in the case where the only target

is collinear with the two hydrophones. The 1531 meters is used since the speed of

Signal with and without White Noise
420 i 1 1 1 1 1 1 1 1
32.27 5

)

22.57 »

12.7 7 B

29 -

Zos- | \W
16.7

-36.27

e N | H:

-46.07

-55.8 T T

1 i 1 !]
1 21 41 61 81 101 120

140 160 180
Time Cycles (1000/sec)

200

Figure 3.1: Simple Narrow-band Signal

19

20

sound in sea water is 1531 meters/second. Having a 1 second (1000 time cycles)
time delay is convenient since the Unix utility “split” splits files into files of 1000
lines each.

The second test case is similar, but with two modifications. One is that Hy-
drophone 1 is closer to the target in this case. The other is the triangular layout
to test the distance calculations were correct.

The third test case uses a more arbitrary triangle and is verified graphically.
The two graphs (figures 3.3 and 3.4) show both the correctness of the time delay

calculations and an occurrence of transient target noise.

Three simple test involving 2 hydrop! | 1 target.

1. The recordings at Hydrophone 0 are 1 second (1000 time cycles) ahead of those
at Hydrophone 1. This was verified using the Unix utilities "split® and "diff* (with no
local noise at the hydrophones).

Target 1531 m @ 1531 m @

2. The recordings at Hydrophone 1 are 1 second ahead of those at Hydrophone 0.

Again, this was verified using "split" and "diff* with no local noise at the hydrophones.

2651.77 m

3. The recordings at Hydrophone 0 are 112 time cycles ahead of those at Hydro-
phone 1. (The time delay is approximately 0.11175 seconds.) This is illustrated by
the following two graphs of the recorded signals at the two hydrophones. These
graphs also illustrate the occurence of transient target noise. In these graphs, the
target is producing a signal of 20 Hz with amplitude 5. The transient noise is a
damped harmonic with initial amplitude of about 20 (it's randomly adjusted) at a
frequency of 200 Hz.

Target

Figure 3.2: Three Test Cases

21

Test 3 Hydrophone O
14.0 T T T T T T

¥ 1

70

Signal
5

-140 I

-21.0

‘28 0 1 1 1 L 1 1 i

1 1

7700 7710 7720 7730 7740 7750 7760 7770 7780 7790 7800

Time Cycle (1000/sec)

Figure 3.3: Graph Illustrating Test 3

22

Test 3 Hydrophone 1

14.0 T T

] i 1 ¥ i i 1

70 |

Signal
g
o

-14.0

210

'28 0 1 1 1 1 1 | 1

7812 7822 7832 7842 7852 7862 7872 7882 7892 7902 7912

Time Cycle (1000/sec)

Figure 3.4: Graph Illustrating Test 3

23

24

3.3 A Sample Test Case

This section consists of a selection of graphs from one of the test cases that were
visualized. The parameters of the simulation are included in Appendix C. This
example is typical of the testing performed by use of visualization tools.

Figure 3.5 shows the recording of Hydrophone 0 for the entire 20 second simu-
lation. The large spike is an example of local impulsive noise at the hydrophone.
Also note the low small spike between 10000 and 12000 cycles.

Figure 3.6 shows a close-up of the impulsive spike and also illustrates the
period signal overlaid with white noise.

Figure 3.7 shows a close-up of the low small spike. While it doesn’t appear to
be all that impressive, it’s about twice as low as any of the surrounding readings.
The vertical scale was dominated by the impulsive spike. This low spike is an
occurrence of transient target noise as we will see in examining figure 3.9.

Figure 3.8 shows the recording of Hydrophone 1 for the same simulation. Again
the large spike is the local impulsive noise. The occurrences of these spikes is
different for each hydrophone. (The random number generation was initialized
using the node number.)

Figure 3.9 shows the low spike as recorded by Hydrophone 1. Note this spike
goes approximately as low as the spike in figure 3.7. (They shouldn’t be identical
because each hydrophone has independent local white noise.) The time delay is
exactly 1000 time cycles, which is the time delay for Target 1 with respect to these
two hydrophones. Thus, this is (almost certainly) an example of transient target

noise from Target 1.

25

Test2 Hydro O

2163 i 1 i I 1 1 1 1

188.97 L

161.47 5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Time Cycles (1000/second)

Figure 3.5: Entire Recording at Hydro 0

216.3

188.97

161.47

134.07

106.57 ‘

9.1 |

Sig.nal

51.61

242 !

-3.2 7

-30.7-

'58-1 1) 1 1 i 1 1 I 1
13800 13850 13900 13950 14000 14050 14100 14150 14200 14250 14300

Time Cycles (1000/second)

Figure 3.6: Periodic Structure and Impulsive Noise

Test2 Hydro O

216.3 L L

188.97 i

161.47 -

134.07 i

106.57 -

gnal

79.1 -

51.6 B
24.2 s
3.2 Ak

-30.71 2

'58. 1]] 1 1 1 1 I T]
10750 10760 10770 10780 10790 10800 10810 10820 10830 10840 10850

Time Cycles (1000/second)

Figure 3.7: Transient Target Noise

27

Test2 Hydro 1

Rl el ' ,
1 ll’ ,‘|,| '|f|,1!1h “” I"H‘“ 1‘” Wil ||’|H ” !“ ||'”I|~|{ }1 ll‘ﬁ-” Ml f”x" y" "1 ‘\

it I
bk ‘I|’(\l.‘; \1' J}

" i b

1 (LR

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Time Cycles (1000/second)

Figure 3.8: Entire Recording at Hydro 1

28

29

Test2 Hydro 1
223.8 1 : . : : :

195.17

166.57

137.87

109.27

0.6]

Signal

51.9

23.37

-5.4 7

-34.07

‘62.6 T 1 ' 1 1

|}
11750 11760 11770 11780 11790 11800 11810 11820 11830 11840 11850

Time Cycles (1000/second)

Figure 3.9: Transient Target Noise Revisited

30

Bibliography

[1] Hall, D. L. (1992). Mathematical Techniques in Multisensor Data Fusion.
Artech House, Boston.

[2] Oppenheim, A. V. & Schafer, R. W. (1989) Discrete-Time Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[3] Pillai, S. U. (1989). Array Signal Processing. Springer-Verlag, New York.

[4] Stearns, S. D. & David, R. A. (1988). Signal Processing Algorithms. Prentice-
Hall, Englewood Cliffs, NJ.

[5] Wegman, E. J. & Smith, J. S. (Eds.) (1984). Statistical Signal Processing.
Marcel-Dekker, New York.

[6] Wegman, E. J., Schwartz, S. C. & Thomas, J. B. (Eds.) (1988) Topics in
NonGaussian Signal Processing. Springer-Verlag, New York.

Appendix A

The Source Code for the Simulation and Related Files

This appendix contains 6 files: the three node programs written in C, the Makefile
used to compile them, the file of constants, and the Unix script file to run the

programs on the Paragon.

31

/*

RERARERERERURB BV BRERBRBRARNR
HERBRERERBRBRBRBBHBRBRBNBRNR
MANAGER NODE PROGRAM
HRBRBRBWPBRARRBRBRBRARRRR RS
REDBRRBERERBRBRERBRBBRRBRRUR

File: /home/cjones/project/signal.c

Use "make" to compile and "sig" in the testsite subdirectory to rum.
It’s imperative that the programs (signal, hydro, and target) be run

on the correct nodes. The message passing depends on it.

Note that any changes to the constants MAXHYDRO or MAXSOURCE would require

the corresponding change to be made to sig.

SIGNAL EMULATION PROJECT
PROGRAMMER: Charles A. Jones
DATE OF LAST REVISION: July 3, 1994

The purpose of this project is to emulate the signals that would be
recorded by a linear array of hydrophones from various sources, with
noise occurring at the sources, at the hydrophones, and, in future

versions of this project, along multiple paths.

*/

#include "/home/cjones/project/constants.h"

#include <time.h>
void main() {

/*

This program runs on the manager node; it gets the various inputs

and distributes them to the proper nodes. Then the manager synchronizes the

time cycles.

32

33

*/

int i,j,k ; /* loop counters */

int tar, hyd; /* indices for targets and hydros */

int numHydros; /* the number of hydrophones */

float dist[MAXHYDRO]; /* the distance to Oth hydrophone from other hydros */
double distMat[MAXSOURCE] [MAXHYDRO]; /* distances from targets to hydros */
double distsq; /* used in law of cosines */

long cycleDelay[MAXSOURCE] [MAXHYDRO]; /* num of cycles for signal to travel
from target to hydro */

float maxDist[MAXSOURCE}; /* max dist from given target to any hydro */

long relDelay[MAXSOURCE] [MAXHYDRO]; /# relative delay */

long totalDelay; /# largest of the relative delays -- length of warm-up */

int numSource; /* the number of sources */

int numFreq[MAXSOURCE]; /* the number of fregencies for each source */

float freq [MAXSOURCE] [MAXFREQ]; /* the freqencies */

float a [MAXSOURCE] [MAXFREQ]; /* the amplitudes -- the cosine coeffs */

float range [MAXSOURCE]; /* the distance from the source to the Oth hydro */

float theta [MAXSOURCE]; /* the angle formed by the line of hydros and the
line through the source and the Oth hydro */

float broadMean [MAXSOURCE]; /* the mean of the gaussian forming the
broadband portion of the signal */

float broadSD [MAXSOURCE]; /* the SD of the gaussian for broadband */

float transAm; /* amplitude of the transient noise at a target */

float trHowOften; /* average time between transient signals #*/

char mulPathAns[40]; /* read answer to multipath prompt */
int multiPath; /* logical variable --True for multipath included */

float howlLong ; /* the number of seconds the simulation is to run */
long numCycles; /* the total number of cycles = howLong*SAMPLERATE */

long cycle; /# loop counter for cycles */

float noiseMean; /# the mean of the Gaussian noise at each hydro */

float noiseSD; /* the std. dev. of the noise at each hydro */

float floatDummy; /* these variables are used for message passing */
int intDummy;

long longDummy;

long longSize;

long floatSize;

long intSize;

double startTime; /* stores starting time for computing elapsed time */
double endTime; /* stores ending time */

double elapsedTime; /* elapsed time */

FILE *fopen(); /* file opening function */
FILE *fp; /# file pointer =*/

/* distance from hydro O to hydro 0 is set to 0 */
dist[0] = 0.0;

/* open file for storing results of tests */
if ((fp=fopen(“test.results","a"))==NULL) {

fprintf(stderr, "Cannot open test.results from manager node. \n");
} else {

fprintf(fp, "\n FRSREBBRBRR R RFHRRRPBRRRBERRRS \D") ;

fprintf(fp, " ### test results follow #¥#");

fprintf(fp, "\n RARBRRBRRRBRERRBHHRBRRRBRBE/E \n \D") ;

} /* end if */

/* set up the message sizes */
floatSize = sizeof (floatDummy);
intSize = sizeof (intDummy);

longSize = sizeof (longDummy) ;

/* Welcome message */
printf("\n \n");
printf("Hello, welcome to the signal emulator.\n");

printf("You will be asked to input several parameters for the emulation.\n");
printf("Thank you in advance for your cooperation.\n\n");

/*
HERRBBBBVBRBBRBRRRRRBBRBBRBRBERDRRRBRBRBRBBRERBBRRBBRRBRBBBRBRBRES
RURRRBURBBRBRURBRBRBBRBBBRBRBBRBRBRUR BB BB B RBRRRREBHR BB RRBRBRBBEE
The next block of code prompts the user for inputs, reads inputs,
and distributes these inputs.
FRBBRRBURBRBRBRRBRBRRURBRR BB BBRREBRBBRBB BBV RBRRBRURBRRRRRRRB U RH
HHBRBRBRRBRBRBRRBBBRRBRRAR R RBRRERRBRRBRRBRBBABRB BB RV RRBRBRB RS
*/

/* Get the user inputs */

/* Start with the length of the simulation */
printf("Please enter the length of time, in seconds, to be simulated.\n");
printf("The maximum allowed is %1d seconds. \n \n", MAXSEC);
scanf ("%f", &howlLong);
numCycles = howLong * SAMPLINGRATE ;
csend (ANY, &numCycles, longSize, TOALL, 0);
fprintf(fp, "number of seconds = %1.2f \n", howLong);
fprintf (fp, "number of time cycles = %1d \n \n", numCycles);

/%
RARRBRBRRBBRRFRBREBESS

~# Hydrophone inputs #

#itad#RARRBRBRBRBRRY

x/

/* get the number of hydrophones and distribute */

printf("Please enter the number of hydrophones. \n");

printf("The maximum allowable is %1d hydrophones.\n \n", MAXHYDRO);
scanf ("%d", &numHydros);

/* Broadcast this value to all nodes */

csend (ANY, &numHydros, intSize, TOALL, 0);

fprintf (fp, “"number of Hydrophones = %id \n", numHydros);

35

/* get the distances of each hydrophone from hydro 0 */
printf
("Please enter the %1d distances, in meters, from the 0th hydrophone.\n",
numHydros-1) ;
for (i=1; i<numHydros; i++) {
scanf ("%f", &dist[i]);
/* Broadcast this value to all nodes */
csend (ANY, &dist[i}, floatSize, TOALL, 0);
fprintf (fp, "distance from hydro %1d to hydro 0 = %1.2f \n",i,dist[i]);
} ; /% end for */

/* get the noise mean and sd */
printf
("Please enter the mean and SD of the Gaussian noise at the hydros.\n");
scanf ("%f", &noiseMean);
scanf ("%f", &noiseSD);
/% Broadcast these to all active hydrophone nodes */
for (i=0; i< numHydros; i++){
csend (HYD, &noiseMean, floatSize, i, 0);
csend (HYD, &noiseSD, floatSize, i, 0);
}
fprintf (fp, "\nGaussian noise at hydros mean = %1.2f \n", noiseMean) ;

fprintf (fp, "Gaussian noise at hydros SD = %1.2f \n \n",noiseSD);

/* Determine if multipath computations are desired */
printf ("Would you like multipath computations done?\n");
scanf ("Y%s",mulPathAns);
multiPath = (mulPathAns[0] == ’y’) || (mulPathAns[0] == ’Y’);
for (hyd = 0; hyd < numHydros; hyd++) {

csend (HYD, &multiPath, intSize, hyd, 0);

}
fprintf (fp, "multipath = %1d \n", multiPath);

/*

37

HRBUHRRBRBRRBRBRBUR

Target Inputs

##RRRRRIBBBRBRBRRBH

*/

/* get the number of targets */

printf ("Please enter the number of targets (sources).\n");
printf ("The maximum allowable is %id sources.\n",MAXSOURCE);
scanf ("%d", &numSource);

/* Broadcast this value to all nodes */

csend (ANY, &numSource, intSize, TODALL, 0);

fprintf (fp,"Number of targets = %1d \n \n", numSource);

/* get transient noise info */

printf ("Enter the average number of seconds between transient noises\n");
printf ("Enter 0 if transient noise is not desired.\n");

scanf ("%f", &trHowOften);

fprintf(fp, "average time between transient noises = J1.2f \n",trHowOften);

/* get the required info for each target */
for (tar=0; tar< numSource; tar++) {
/* first distribute the transient noise time info */
csend (TARGET, &trHowOften, floatSize, MAXHYDRO + tar, 0);
printf ("Please enter the distance in meters from hydrophone 0 to \n");
printf ("source number %1d .\n",tar);
scanf ("4f", &range[tar]);
csend (TARGET, &range[tar], floatSize, MAXHYDRO + tar, 0);

fprintf (fp, " the range to target %1d = %1.2f \n",tar,range[tar]);

printf ("Please enter the angle (0-180 degrees) formed by the line of \n");
printf ("hydrophones and the line from hydrophone 0 and source %1d\n",tar);
scanf ("4f", &theta[tar]);

csend (TARGET, &theta[tar]), floatSize, MAXHYDRO + tar, 0);

fprintf (fp, " the angle for target %1d and the hydros = %1.2f \n",tar,
thetaltar]);

printf ("Please enter the mean for the broadband signal for source %1d \n",

tar);

scanf ("%f",%broadMean[tar]);
csend (TARGET, &broadMean[tar], floatSize, MAXHYDRO + tar, 0);
fprintf
(fp, " Broadband mean for target %1d = %1.2f \n",tar, broadMean[tar]);

printf
("Please enter the SD for the broadband signal for source %1d \n",tar);

scanf ("%f", &broadSD[tar]);
csend (TARGET, &broadsD[tar], floatSize, MAXHYDRO + tar, 0);
fprintf(fp," Broadband SD for target %1d = %1.2f \n",tar,broadsD[tarl);

printf
("Please enter the amplitude for the transient noise for target %1d.\n",
tar);
scanf ("%f", &transAm);
csend (TARGET, &transAm, floatSize, MAXHYDRO + tar, 0);
fprintf(fp," Transient amplitude for target %1d = %1.2f \n",tar,transim);

printf("Please enter the number of freqencies for source %1d \n",tar);
printf("The maximum allowable is %1d \n", MAXFREQ);
scanf ("%d", &numFreq[tar]);
csend (TARGET, &numFreq[tar], intSize, MAXHYDRO + tar, 0);
fprintf
(fp," Number of frequencies at target %1d = %1d \n",tar,numFreq[tar]);
fprintf
(fp," Here are the frequency and amplitude pairs for target %1d: \n",
tar);)
for (j=0; j< numFreq[tar]; j++) {
-printf("Please enter a fregency and amplitude\n");
scanf ("%f", &freqltar][jl);
csend (TARGET, &freq[tar][j], floatSize, MAXHYDRO + tar, 0);

38

39

scanf ("Yf", &kaltar][jl);

csend (TARGET, &al[tar][j], floatSize, MAXHYDRO + tar, 0);

fprintf(fp, "%20.2f %20.2f \n", freq[tar][j], altar][jl);
} /* end for j */

fprintf (fp,"\n");
} /* end for tar */

/*

BREBRUBRB B RRB R BB BRRBRRHRRBERB BB ERB BB RS
RBLRBBBRRBRRERBBRRBBRBRBERRERR R RBRRARERBRRBERBHRR R R RS
End of user input section.
BEBEBBBRBRRBREVRBRRRBBBBRRR BBV RBRRBBRBRRERBREBRARBRRRWR BRI RRS
BREFRARRRBRWRRBRRRERBRBRB BB LR BB BDBH BB BB RARBRERABRIRRRRRRRRDRY

*/

/*
BREBRBRERBRREBHRHAR BB BB RV BB BV RB BB BRBEBRPRBBERBRRRBBRRRRRBR BB RN
HERBRERRRBRBHRRRRHERR BB RS R R R BR BB BB R BB HRBRRRRRRBRRRR R R B 2H
Do some calculations of distances

using the law of cosines to determine distances
RERBRBRURBBRBSBRBRBRERBEEARRRRBRB R R RR BB BB BRRRRRRRBRRRBRRRRRARY
BURBRRBRBRRRRBBRRUBBHRR R R ERBERBRBPURBERBRRRBRRABRAR AR RRR

*/

for (tar=0; tar<numSource; tar++). {
maxDist[tar] = 0.0;
for (hyd=0; hyd<numHydros; hyd++) {
/* Use Law of Cosines to determine distance squared */
/* Using "+" because interior angle is 180-theta */
distsq = (rangeltar])*(range[tar]) + (dist[hyd])*(dist[hyd])
+ 2.0 * (range[tar]) * (dist[hyd]) * cos(theta[tar] * TORAD);

/* take square root and store in matrix of distances */
distMat[tar] [byd] = sqrt(distsq);

40

/* Update max dist if needed */
if (maxDist[tar] < distMat [tar][hyd]) {
maxDist[tar] = distMat [tar]([hyd];
} /% end if */
} /* end for hyd */
} /* end for tar */

/*

BREBHRR BB SRR AR R R R R R R R R R
REBBBHRERBEHRRRE R BRRRBRHHEE R R R R R R R R
Use the dist matrix to compute relative time delays for each
TARGET
RESREBHRHRERRDRBBRLRBR L RRRBRRREBRBRRGRRRRR R RRRBRRRRRBR G
FRABERRRRRBERRRBRRRBRARREB R R R R R RR BB REHH R

*/

totalDelay = O;
for (tar = 0; tar < numSource; tar++) {
for (hyd = 0; hyd < numHydros; hyd++) {

/* Since the targets are separate, we only need to establish temporal
coordination relative to each target, not simultaneously for all
of the targets; use +0.5 to round */

relDelay([tar] [hyd] =

((maxDist [tar]-distMat [tar] [hyd])*SAMPLINGRATE)/SPEED + 0.5;
/* Adjust for multipath delays */
if (multiPath) {

relDelay[tar] [hyd] += MULTI1 + MULTIZ;

3

/* these messages are coded by target number * 100, so they don’t get
mixed-up */
csend ((HYD+100%tar), &relDelay([tar][hyd], longSize, hyd, 0);

/* Update total delay if necessary -- total delay is the length of the
warm-up period that will be required */
if (totalDelay < relDelay[tar][hyd]) {

41

totalDelay = relDelay[tar] [hyd];
} /* end if %/
} /% end for hyd */
} /* end for tar */

/* Broadcast totalDelay everywhere -- it’s the length of the warm-up */
csend (ANY, &totalDelay, longSize, TOALL, 0);

/*

BERBRBRBRBRBBR BB EBRBRRBRAEER BB BHER BRI BB ERRBRRRRRGRRRARRBNR R AR
RERBRERBRBRBRBBDBHERBRB RV BRERBRE BRI BB BB BRBRBRR BB RR R BRI RS
End of time delay computations.

HERBRBRBBBRB R RRERERBRBBRRRBHERBRR BB RREBU BB BB RARRBRWRRBR B RRNR Y
HRRBRRVBVBRRRURBRRRBRRBERRRBRRBRREBRRBRURRRBRRRRRBRBBRBRRBRRAR2H

*/

/*
RERVBRBBRRRBRBBRRBRURRBBBBRBBRVBRERBRBRRRREGRRBRRBRGRURBRBHRRR 1Y
HRRRBRBRRBRBABBBEBRBRBRBRER BB R BEFRARRRBRUR AR BR BB RV RRRBRGRRRRRRS
Manage the warm-up period.

RERBEBRBBRRBRR BB ER AR B RHBRERRRD BB BB RHBRBRBRABURRBRARUBRRRRRR
HRURBVEBRBHBHRBBERBRBBB BB BB RRRBRABERBRRRRERBRBRRRRRRRRRRRR BB R BRI

*/

printf ("Warming-up -- will require %1d time cycles \n \n", totalDelay);
fprintf (fp,"Warm up takes %1d time cycles \n",totalDelay);

/* synchronize the warm-up cycles */
for (cycle=0; cycle < totalDelay; cycle++) {

/* send the message to start the next cycle */

for (kx=MAXHYDRO; k < (MAXHYDRO + numSource); k++) {
csend (SYNCH, &intDummy, intSize, k, 0);

/* wait for all of the hydrophones to complete the cycle */

for (j=0; j< numHydros; j++) {
crecv (RESYNCH, &intDummy, intSize);
} /% end for j %/

} /* end for cycle */

printf ("Warm-up period over -- simulation beginning \n \n");

/*
RERBREBRRRBBRRRRRRRRB BB RRRBRHRRDRRR DR R R RRRRBRRRRRRRRBRARS
RRSELURRH LB BRBRRRRRRBBRRARBRBRRRBRERBRBRRRHBRRRB DR BRRRRERY
End of the warm-up period.
RERERBRBRERERRRERRRR BB RR BRI AR R BRI R R R R B R
BRESBERRREHERRRRRRERRAD R RHRER BB RERRRRDEFRRRRRRR BB BRB R BRRRNR

RRERBLRRB SR ERRBHRBRRRR B RERBB BB BRRRRRRGRERRERR BB RRR AR RRR
FEAAR B AR RRRRBRRRR BB R R R R AR R RR BB AR R B R R R R R
Manage the actual simulation.

FERRRRRR DR RRRRRRERRBARARRRHHEHHR R PRI R R R R R R 1
BRERHRARADRRRRRRRRRRRRBR B R R

*/

/* start timing */
startTime = dclock();

/* synchronize the cycles #*/
for (cycle=0; cycle < numCycles; cycle++) {
/* send the message to start the next cycle */

for (k=MAXHYDRO; k < (MAXHYDRO + numSource); k++) {
csend (SYNCH, &intDummy, intSize, k, 0);

/* wait for all of the hydrophones to complete the cycle */

42

for (j=0; j< numHydros; j++) {
crecv (RESYNCH, &intDummy, intSize);
} /% end for j */

} /* end for cycle */

/*
RERRBBBBRBURRRBBRARBRBR BB BRRBRBR A RBBERBR RV BRBRRRABRRRBBRBRRRBIR
RERRBBBBRRURBRBBRBRBRER BB BB RABBH BB BB BB BB RIBRBRRGURARRRBRERRNRIER
End of actual simulation.
HURRBRBARRBBREBRBBRBRRBRRBRER BB B BRBBRRBBRBRRBRRBRRBBRBRRRRBRR IR
HRBBHBRURBRBRBBRBBRRBBRBRBBRR BBV RRB BB RRBBBRBBBRRBRBRBRBR BB R BB RIRY

*/

/* finish timing and report results */
endTime = dclock();

elapsedTime = endTime - startTime ;

printf ("\n \n ");

printf("After completing user inputs and the warm-up, the simulation \n");

printf("took %1.3f seconds. \n \n", elapsedTime);

fprintf(fp, "The simulation took %1.2f seconds. \n \n",elapsedTime);

} /* end of signal */

43

44

/*

HERRRERBUBBBREBBBRERURBRRBIRY
HRBABRBURERBRBRRBRBBGURRBURAWY
TARGET NODE PROGRAM
FREBRRBERBRBGRBRBRBBRVREBRR WY
HRBRBRBBRBRBBBRRBRFRERRBBRRRY

file: /home/cjones/project/target.c

Use "make" to compile and "sig" in the testsite subdirectory to run.

PROGRAMMER: Charles A. Jones
Date of last revision: June 14, 1994

target.c -- this is the program to run on the target nodes.
This program will produce the signals to be generated by ome source
(target) and received by all of the hydrophones.

This program simulates a suite of narrow-band harmonic frequencies,

broad-band flow noise, and transient noise.
*/
#include "/home/cjones/project/constants.h"

void main () {

/*

this program is run on the target nodes.

It accepts the globally broadcast messages, the messages for this particular
target, then computes and broadcasts the signal value for each hydrophone

for each time interval.
*/

long numCycles; /* the number of time cycles x/

45

long cycle; /* loop counter for time cycles */

long warmUp; /# the number of time cycles in warm-up */

int numHyd; /% the number of hydrophones */

int numTar; /* the number of targets %/

float dist[MAXHYDRO]; /* the distances from hydro i to hydro 0 */

int i, j, k,m, n; /* loop counters and other utility ints */

unsigned nn; /# node number */

float t; /# time of current cycle */

float range; /# distance from target to hydro 0 */

float theta; /* angle formed by target and hydro line */

float broadMean; /* mean for broadband signal */

float broadSD; /# standard dev for broadband signal */

int cycleShift; /* number of cycles to shift for time delay */

float broad; /* broadband signal */

float broadArray[BROADMOD]; /* array of precomputed broadband values */
float broadSave[BROADBAND]; /#* array used to computed moving average */

int transCount; /* counter used for transient signal =*/

int transient; /# logical -- true if transient noise is being added */
float transAm; /* amplitude of transient noise */

float savedTrAm; /# saved amplitude of transient noise */

float transInt; /* expected number of secs between transient noises */

long trThresh; /* threshhold value to compare random with */

int numFreq; /* number of frequencies in narrow band suite */
float freq[MAXFREQ]; /* the fregencies */

float a[MAXFREQ]; /* the corresponding amplitudes */

float phase[MAXFREQ]; /* a phase shift for each frequency */

float randNum[RANDMOD]; /* standard normal random values */
int randIndex; /* index into the st. normal values */

float pulse; /* the signal value */
float shift; /* time shift between current hydro and hydro 0 */

FILE *fopen(), *fp, *fp2;

long longSize; /* mext 6 used for message passing */
long floatSize;

long intSize;

long longDummy;
int intDummy;
float floatDummy;

/* set up message sizes */
floatSize = sizeof (floatDummy);
intSize = sizeof (intDummy);

longSize = sizeof (longDummy);

/* get node number */
n = mynode();
nn = n; /* store as unsigned int */

/* receive some globally broadcast values */
crecv (ANY, &numCycles, longSize);

crecv (ANY, &numHyd, intSize);

dist[0] = 0.0;

for (i=1; i< numHyd; i++) {
crecv (ANY, &dist[i], floatSize);

crecv (ANY, &numTar, intSize);

/* the following block of statements are done for active nodes only x/

if (n < (MAXHYDRO + numTar)) {

/* first read in some standard normal random numbers */
if ((fp2=fopen("/home/cjones/project/my.rand","r"))==NULL){
fprintf (stderr,"Cannot open file of random numbers, node %d \n",n);
} else {
for (j=0; j<RANDMOD; j++) {
fscanf (£fp2,"%f", &randNum[j]l);

46

} /% end for j */
} /* end if else */

/% crank out a random value that depends on the node number */
srandom (nn);

randIndex = random();

randIndex = randIndex % RANDMOD;

/* receive some user inputs that are just for active targets */
crecv (TARGET, &transInt, floatSize);

crecv (TARGET, &range, floatSize);

crecv (TARGET, &theta, floatSize);

crecv (TARGET, &broadMean, floatSize):

crecv (TARGET, &broadSD, floatSize);

/* set-up the broadband noise array */

broad = 0;

for (j=0; j < BROADBAND; j++) {
broadSave[j] = randNum[randIndex];
randIndex = (randIndex + 1) % RANDMOD;
broad += broadSave[j];

} /% end for j »/

/* precompute broadband values */
for (i=0; i<BROADMOD; i++) {

k = i % BROADBAND;

broad = broad - broadSave[k];

broadSave[k] = randNum[randIndex];

randIndex = (randIndex+1) % RANDMOD;

broad += broadSave[k];

broadArray[i] = broad * broadSD / BROADBAND + broadMean;
} /* end for i »/

/* receive the last of the inputs */
crecv (TARGET, &savedTrAm, floatSize);
crecv (TARGET, &numFreq, intSize);
for (j=0; j < numFreq; j++) {

47

48

crecv (TARGET, &freq[jl, floatSize);

/* convert the frequency into radians */
freq[j] = 2*PI*freqljl;
crecv (TARGET, &a[jl, floatSize);

} /* end for */

/* precompute some random phase shifts */
for (k=0; k<numFreq; k++) {

phase [k]=randNum[randIndex] ;

randIndex = (randIndex+1) % RANDMOD;

/* receive the number of cycles in the warm-up */

crecv (ANY, &warmUp, longSize);

/* set-up transient noise variables */
trThresh = (transInt > 0.0) 7 TWOto31/(transInt*SAMPLINGRATE) : 0;

transient = (random() < trThresh);
transCount = TRLENGTH;

/* now do the work */

/* loop through ALL of the time cycles */

/* Note that the target nodes do the same job during warm-up as
during the actual simulation, so the following loop does both x/

for (cycle=0; cycle < (numCycles + warmlp); cycle++) {

/* convert the cycle into a time in seconds */
t=(float)cycle/SAMPLINGRATE;

/* get synchronized */
crecv (SYNCH, &intDummy, intSize);

/* build up the narrow band signal (just a trig polynomial) */
pulse = 0;

49

for (k=0; k< numFreq; k++) {
pulse = pulse + al[k]*cos({(t+phase[k])*freq[k]);
} /% end for k */

/* now add in the broadband portion */
m = cycle % BROADMOD;
pulse += broadArray[m];

/* sometimes add in the transient noise */

if (tramnsient) {
pulse += transAm#*((double)transCount/TRLENGTH)*sin(TRMULT*transCount) ;
transient = (--transCount);

} else if (random() < trThresh) {
transient = 1;
transCount = TRLENGTH;
transAm = savedTrAm * 0.5 * (1.0+fabs((double)randNum{randIndex]));
randIndex = (randIndex+1) % RANDMOD;

} /* end if else if »/

/* send out the final value to each hydrophone */
for (j=0; j < numHyd; j++) {

csend (TARtoHYD, &pulse, floatSize, j, 0);
} /% end for j »/

} /* end for cycle */

} else {

/* this is an unused target node */

/* receive the number of cycles in the warm-up */
crecv (ANY, &warmUp, longSize);

if ((fp=fopen ("target.junk","a")) == NULL) {
fprintf (stderr, "Can’t open target.junk from target node %1id \n", n);

} else {
fprintf (fp, "node: %1d -- target %
} /% end if */
} /* end if %/
} /* end of target node */

1d is idle \n", n, n-MAXHYDRO);

50

51

/*

HERBBIBRRRBRBRBBBR BBV RERURBRRBRBRS
HERRBBBRRBRBRRBRRFBERBBBERRRERR VBB B
HYDROPHONE NODE PROGRAM
RRARBVEDRBBBRBRBBDRRR BB BRRBRBRRRRURE
RRBRBRRBBBUBBBBBBRRRBRBRUBRBEBRBREREY

file: /home/cjones/project/hydro.c

Use "make" to compile and use "sig" in testsite subdirectory to run

See notes at beginning of signal.c.

PROGRAMMER: Charles A. Jones

Date of last revision: June 15, 1994

hydro.c --

This is the program that produces the output for the HYDROPHONE nodes.

It receives the globally broadcast messages, the messages for this hydrophone
and then loops through all the time cycles. During each time cycle,

this node receives signal values from each of the targets, assembles them
accounting for time delays (the targets are in different positions), then adds
them together, adds in some noise, and writes the value to the output file

for this hydrophone.

*/

#include "/home/cjones/project/constants.h"

void main () {
/*
this function is run on the hydrophone nodes.

*/

long numCycles; /* number of time cycles =/

long cycle; /* loop counter for time cycles */

long warmUp; /* number of cycles in warm-up period */

long offset[MAXSOURCE]; /# cycle offsets for the various targets */
int numHyd; /* number of hydrophones #*/

int numTar; /* number of targets */

float dist[MAXHYDRO]; /* distances from hydro i to hydro 0 */

int i, j, k, n; /* loop counters & utility integers */

int whichTar; /* target from which last pulse received */

int tar; /* loop counter for targets */

unsigned nodeNum; /* node number */

char filename[STRLENGTH]; /# filename for output */

FILE *fopen(), *fp, *fp2; /# built-in file open fun,2 file ptrs */

int multiPath; /* logical -- do multipath computations? */

float randNum[RANDMOD]; /* previously produced st. normal values */
int randIndex; /# index into random values */

int transIndex; /* index used for transient noise =*/

float noiseMean; /* mean for Gaussian (white) noise */

float noiseSD; /* standard dev for Gaussian noise */

/* static declarations gaurantee initialization to 0 */

static float sum[MAXCYCLE]; /* sum of signals received from targets */
static long count[MAXCYCLE];

long index;

float pulse; /* recorded signal pulse */

long floatSize; /* these 6 are used for message passing */
long longSize;

long intSize;

long longDummy;

int intDummy;

float floatDummy;

/* set-up size of various message types */

92

floatSize = sizeof(floatDummy);
intSize = sizeof (intDummy) ;

longSize = sizeof (longDummy) ;

/* read in some standard normal numbers */
if ((fp2=fopen("/home/cjones/project/my.rand", "r")) == NULL) {
fprintf (stderr,
"Cannot open file of random numbers from node %d \n",n);
} else {
for (j=0; j<RANDMOD; j++) {
fscanf (fp2,"%£f", &randNum[jl);
} /% end for j */
} /* end if else #*/

/* next receive the user inputs */
crecv (ANY, &numCycles, longSize);
crecv (ANY, &numHyd, intSize);
dist[0] = 0.0;
for (i=1; i< numHyd; i++) {

crecv (ANY, &dist[i], floatSize);

/* get node number */
n = mynode();

nodeNum = n; /¥ store as unsigned int %/

if (n < numHyd) {
crecv (HYD, &noiseMean, floatSize);
crecv (HYD, &noiseSD, floatSize);
crecv (HYD, &multiPath, intSize);

} /* end if »/

crecv (ANY, &numTar, intSize);

if (n < numHyd) {

93

/* This is an active hydrophone node */

/* first receive the offsets (measured in time cycles) for this
hydrophone and all of the targets. */
for (tar=0; tar < numTar; tar++) {
crecv ((HYD + 100*tar), &offset[tar], longSize);
}

/* receive the length of the warm-up period (in time cycles)
it’s the max of the offsets for all targets and all hydros */
crecv(ANY, &warmUp, longSize);

/* open file for output -- node number embedded in file name */
sprintf (filename, "hydro%id.out", n);
if ((fp=fopen(filename,"w")) == NULL) {
fprintf(stderr, "Can’t open file ¥%s \n", filename);
} else {

/* crank out a random value that will depend on the hydrophone #*/
/* so the different hydrophones exhibit different randomness */
srandom (nodeNum) ;

randIndex = random();

/* this is different for each hydrophone */
transIndex = random();

/* run through the warm-up period */
/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
for (cycle=0; cycle<warmUp; cycle++) {

for (tar = 0; tar < numTar; tar++) {
crecv (TARtoHYD, &pulse, floatSize);
whichTar = infonode() - MAXHYDRO;
index = cycle - offset[whichTar];
if ((index >= 0) && (index<numCycles)) {
sum[index] = sum[index] + pulse;

count [index] = count[index] + 1;

54

} /* end if */

/* HANDLE MULTIPATH CALCULATIONS HERE */
if (multiPath) {
index += MULTI{;
if ((index >= 0) && (index < numCycles)) {
sum[index] = sum[index] + pulse * MPRF1;
} /* end if »/
index += MULTI2;
if ((index >= 0) && (index < numCycles)) {
sum[index] = sum[index] + pulse * MPRF2;
} /% end if */
} /* end if multiPath #*/

} /* end for tar */

/* Inform MANAGER NODE all messages for this cycle were received */
csend (RESYNCH, &intDummy, intSize, MAIN, 0);

} /* end for cycle = warmUp */
/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */

/* Loop through all the time cycles */

/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */

/% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */

for (cycle=0; cycle < numCycles; cycle++) {

randIndex = (randIndex + 1) % RANDMOD;

for (tar=0; tar< numTar; tar++) {
crecv (TARtoHYD, &pulse, floatSize);
whichTar = infonode() - MAXHYDRO;
index = warmUp + cycle - offset[whichTar];
/% it shouldn’t be possible for index to be less than 0 */
/* delete after testing XXXXXXXXXXXXXXXXXX */

55

if (index<0) {

fprintf (stderr, "index less than 0 ERROR CONDITION \n");

}

if (index < numCycles) {

sum[index] =
count [index]

} /% end if */

/* HANDLE MULTIPATH CALCULATIONS HERE */

if (multiPath)

index += MULTI1;
if ((index >= 0) &%& (index
sum[index] = sum[index]

} /* end if %/

index += MULTI2;
if ((index >= 0) &% (index
sum[index] = sum[index]

} /* end if »/
} /* end if multiPath

} /% end for tar

sum[index] + pulse;

= count[index] + 1;

{
< numCycles)) {
+ pulse * MPRF1;
< numCycles)) {
+ pulse * MPRF2;
*/

*/

/* Inform MANAGER NODE all messages for this cycle were received */
csend (RESYNCH, &intDummy, intSize, MAIN, 0);

/* add noise here */

sum[cycle] += noiseMean + noiseSD * randNum [randIndex];

/* sometimes add transcient noise */
if (((cycle+transIndex)’TRANSMOD) < TRANSLIM) {

sum[cycle] +=
TRANSMF*noiseMean+TRANSSDF*noiseSD*randNum[RANDMOD- (randIndex+1)];

transIndex += 5; /* shorten the duration of the trans noise */

o6

57

/* debugging XXXXXXXX */
if (count[cycle] != numTar) {
fprintf(stderr, “count was %d expected count was %d when cycle = %d \n\n",

count[cycle], numTar, cycle);

fprintf (fp, "%20.4f\n", sum[cycle]);

/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
} /* end for cycle */

} /* end of inner if then else */

} else {

/* this node is an unused hydrophone node */

/* need to receive this one last message */

crecv(ANY, &warmUp, longSize);

if ((fp=fopen("hydros.junk","a")) == NULL) {
fprintf(stderr, "Can’t open file hydros.junk from node %1d.\n", n);
} else {
fprintf (fp, "hydro %1id is idle \n", n);
}
} /* end if %/

} /* end of hydro */

#itdRRd g
constants.h
HRBBHBHBBURRRRER

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MULTI1 250
MULTI2 150
MPRF1 0.25
MPRF2 0.2
TRANFREQ 200.0
TRANSMOD 19473
TRANSLIM 264
TRANSMF 10.0
TRANSSDF 10.0
RANDMOD 3449
TOALL -1

ANY 1

HYD 2

TARGET 3
TARtoHYD 4
HYDtoTAR &
HYDtoAP 7
SYNCH 10
RESYNCH 11
STRLENGTH 80
MAXHYDRO 30
MAXSOURCE 15

MAIN (MAXHYDRO + MAXSOURCE)

MAXFREQ 20

SAMPLINGRATE 1000

MAXSEC 300

MAXCYCLE (SAMPLINGRATE*MAXSEC)

BROADBAND 6
BROADMOD 5557
SPEED 1531.0
PI 3.141592654
MAXHZ 500.0

58

#define MINHZ 0.0

#define TORAD (PI/180.0)
#define TWOto31 2147483648.0
#define TRLENGTH 15

#define TRTHRESH 1000000
#define TRMULT (0.4*PI)

#include <stdio.h>
#include <nx.h>
#include <math.h>

99

RARBRBBFBRRRBRBBBERBRBBRBRBBRBRBRRBRBBRRBRRVRBERBRRBERRRRBRUR
Makefile for compiling the programs hydro, target, signal
with the command "make" or "pmake".
HRHRRRBRRBRBRRARBUERBBRBRBARBRBRRRERR B RARBRBHRBRBBRGHBRBRBRER

hydro signal target: hydro.o signal.o target.o Makefile
icc -nx -o hydro -02 hydro.o
icc -nx -o signal -02 signal.o

icc -nx -o target -02 target.o

hydro.o: hydro.c constants.h
icc -c -02 hydro.c

target.o: target.c constants.h

ice ~c ~02 target.c

signal.o: signal.c constants.h

icc -¢ -02 signal.c

HURBRBVHRBBRBHRRBRRRRRBRRRBRBBRRR BB BRRRRR R BB R BB RRRR IR BB R4
The Unix script "sig".
Used to run the simulation.
Note that the message passing requires these 3 programs to be
run on exactly the nodes specified here.
RURBBBRRBRRRERURBBRWBRRRRBRBBRBR BB BRRRBBRBRRRRBRBRBRRRRRR AR BRRBR A

This file has been modified for presentation;

it should consist of a single line.

/home/cjones/project/signal -sz 46 -on 45 \;
/home/cjones/project/hydro -on 0..29 \;
/home/cjones/project/target -on 30..44

60

Appendix B

Verbose Output to Illustrate the Time Delay Example

This appendix contains first a file which describes the user inputs and time delay
calculations. This is followed by a file which contains the pulses sent out by each
target as well as the hydrophone recordings. These target pulses were assem-
bled by hand as described in the time delay example and they agreed with the

hydrophone recordings.

HEBBBRRBERERHRRBURRBRRARERBBRBBRRBBRBBRER RS
test results for part (a) follow
HUBEBBLRLBBBERRRBRRBBBRBRRRBGRRRRRBRBRRRS 1S

number of seconds = 0.01

number of time cycles = 10

number of Hydrophones = 2
distance from hydro 1 to hydro O = 100.00

Caussian noise at hydros mean = 0.00

Gaussian noise at hydros SD = 0.00

multipath = 0

Number of targets = 1

average time between transient noises = 6.00

61

the range to target 0 = 1000.00

the angle for target O and the hydros = 87.50

Broadband mean for target 0 = 3.00

Broadband SD for target 0 = 4.00

Transient amplitude for target 0 = 5.00

Number of frequencies at target 0 = 1

Here are the frequency and amplitude pairs for target O:

60.00 6.00

Distance Matrix follows
1000.000 1009.319

Time Delay Matrix
6 0
Warm up takes 6 time cycles

The simulation took 0.06 seconds.

REBBEERRBRBBBURBRBBRBH R BB BBBBBRERBRR BB R R R H S
test results for part (b) follow
HBRBBBBRRRABBRBRBRBRHBR B R BB BRBRBRBRRRBBER RS 1S

number of seconds = 0.01

number of time cycles = 10

number of Hydrophones = 2
distance from hydro 1 to hydro 0 = 100.00

Gaussian noise at hydros mean = 0.00

Gaussian noise at hydros SD = 0.00

multipath = 0

62

63

Number of targets = 2

average time between transient noises = 8.00
the range to target 0 = 1000.00
the angle for target O and the hydros = 87.50
Broadband mean for target 0 = 2.00
Broadband SD for target 0 = 3.00
Transient amplitude for target O = 4.00
Number of frequencies at target 0 = 1
Here are the frequency and amplitude pairs for target O:
60.00 6.00

the range to target 1 = 1500.00
the angle for target 1 and the hydros = 91.00
Broadband mean for target 1 = 6.00
Broadband SD for target 1 = 7.00
Transient amplitude for target 1 = 8.00
Number of frequencies at target 1 =1
Here are the frequency and amplitude pairs for target 1:
40.00 4.00

Distance Matrix follows
1000.000 1009.319
1500.000 1501.587

Time Delay Matrix
6 0
1 0
Warm up takes 6 time cycles

The simulation took 0.07 seconds.

HRRRBRBBBRBRBRRRBBERBBIRREBHHBRERBHRRBEBUUE
test results for part (c) follow
BARBEBRBRBRBBBBBBBRRBBRBBBBBBBRURBRBRRBEE RS

number of seconds = 0.01

number of time cycles = 10

number of Hydrophones = 2
distance from hydro 1 to hydro O = 100.00

Gaussian noise at hydros mean = 0.00

Gaussian noise at hydros SD = 0.00

multipath = 0

Number of targets = 3

average time between transient noises = 8.00
the range to target 0 = 1000.00
the angle for target 0 and the hydros = 87.50
Broadband mean for target 0 = 2.00
Broadband SD for target 0 = 3.00
Transient amplitude for target 0 = 4.00
Number of frequencies at target 0 =1
Here are the frequency and amplitude pairs for target O:
60.00 6.00

the range to target 1 = 1500.00

the angle for target 1 and the hydros = 91.00
Broadband mean for target 1 = 5.00

Broadband SD for target 1 = 6.00

Transient amplitude for target 1 = 7.00
Number of frequencies at target 1 =1

Here are the frequency and amplitude pairs for target 1:

64

40.00 4.00

the range to target 2 = 500.00

the angle for target 2 and the hydros = 103.00
Broadband mean for target 2 = 8.00

Broadband SD for target 2 = 9.00

Transient amplitude for target 2 = 1.00

Number of frequencies at target 2 =1

Here are the frequency and amplitude pairs for target 2:

20.00 7.00

Distance Matrix follows
1000.000 1009.319
1500.000 1501.587

500.000 487.345

Time Delay Matrix

6 0
1 0
0 8

Warm up takes 8 time cycles

The simulation took 0.04 seconds.

oooooooooooooo

oooooooooooooo

tar = 0 cycle = 0 pulse = 0.841

tar = 0 cycle = 1 pulse = -1.002
tar = 0 cycle = 2 pulse = ~2.882
tar = 0 cycle = 3 pulse = -4.056
tar = 0 cycle = 4 pulse = -3.170
tar = 0 cycle = 5 pulse = -2,782

tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle

oooooooooooooo
oooooooooooooo

oooooooooooooo
oooooooooooooo

tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 0 cycle
tar = 1 cycle
tar = 1 cycle
tar = 1 cycle
tar = 1 cycle

W 0 N 0 e W N = O

[T
N = O

pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse

pulse

pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse

L}

~0.130
2.767
4.241
6.469
7.543
9.132
8.217
6.507
6.087
2.030

0.008
-1.883
-3.678
~4.765
-4.101
-3.603
-1.230
1.452
3.119
5.324
6.563
8.025
7.410
5.988
5.342
1.825
4.933
3.439
2.573
3.586

66

[o S = e S A

oooooooooooooo

L T N T o O e S e S O N

W 0O N O o W N = O

[T O T O O
~N OO s, W N = O

pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse

pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse
pulse

|
N N = NN RN W

= 2.017
= 3.755

3.045
3.596
3.371
-1.080
2.021
9.203
12.605
11.050
7.461
8.665

.058
.637
.764
.521
.090
.524
.896
.384
241

= -1.594

1.216
7.615
10.697
9.427
6.421
7.606
10.929
12.531

67

tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar
tar

tar

N N NN N NN DD DNDNDNDDNDDNDNDDNDOOO O O O O O 0O O 0 0 O 00 0 0o o

cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle
cycle

W 0 N O U1 b W NN = O

[S S S = U v
~N O D W N = O

W 0 N OO 0 b W NN = O

[o O ¥ U Y
D W = o

pulse = 0.008
pulse = -1.883
pulse = -3.678
pulse = -4.765
pulse = -4.101
pulse = -3.603
pulse = -1.230
pulse = 1.452
pulse = 3.119
pulse = 5.324
pulse = 6.563
pulse = 8.025
pulse = 7.410
pulse = 5,988
pulse = 5.342
pulse = 1.825
pulse = -0.143
pulse = -1.720
pulse = 4.039
pulse = 6.632
pulse = 4.669
pulse = 4.312
pulse = 4.081
pulse = 4.199
pulse = 4.093
pulse = 3.021
pulse = 1.268
pulse = 2.455
pulse = 5.934
pulse = 8.507
pulse = 9.827
pulse = 11.661
pulse = 16.042

68

15.045
14.335
14.510

15 pulse

]
n
N
(5]
«
a
[
o
fi

3
"
[V]
(5]
«
(3]
far}
o
L}

16 pulse

B
fl
N
(4]
[
(2]
=
o
[}

17 pulse

oooooooooooooo

-0.1301
.7669
.2413
.4687
.5434
L1317
L2172
.5069
.0869
.0299

N O OO 0O W N O N

oooooooooooooo

oooooooooooooo
oooooooooooooo

2.2097
4.0246
6.7046
7.3408
10.3178
11.0707
11.0058

9.3582

4.2619

3.8456

oooooooooooooo
oooooooooooooo

5.4465

i1

.8481
10.
10.
13.
14.
13.
.2499

3086
7259
1682
1208
8863

5.0156
5.4967

oooooooooooooo

oooooooooooooo
oooooooooooooo

.8409
.0016
.8823
.0559
.1703
.7818
.1301

2.7669
4.2413
6.4687

oooooooooooooo

oooooooooooooo

.9405

1.5567

.1052
.1791
.0843
.1517

1.8159

.0477

70

6.4892
4.2434

oooooooooooooo
oooooooooooooo

oooooooooooooo
oooooooooooooo

O O P W O,

.3339
.2102
.0202
.2620
.8151
10.
i6.
i8.
19.
18.

5825
7090
8802
6947
2399

71

Appendix C

Parameters for Sample Test Case

This appendix contains a file which describes the user inputs for the sample test

case of section 3.3. This file is produced by the simulation.

BUEBURBERHRBERBBBERERERBHERY#Y
test results follow #i#
RHBRBEBBRBBBRBEREBBUBRABBRBU#Y

number of seconds = 20.00

number of time cycles = 20000

number of Hydrophones = 3
distance from hydro 1 to hydro 0 = 1531.00
distance from hydro 2 to hydro 0 = 15310.00

Gaussian noise at hydros mean = 10.00

Gaussian noise at hydros SD = 5.00

multipath = 0
Number of targets = 2

average time between transient noises = 5.00
the range to target 0 = 1531.00
the angle for target 0 and the hydros = 60.00
Broadband mean for target 0 = 1.00

72

73

Broadband SD for target 0 = 2.00

Transient amplitude for target 0 = 20.00

Number of frequencies at target 0 =1

Here are the frequency and amplitude pairs for target O:
40.00 8.00

the range to target 1 = 1531.00
the angle for target 1 and the hydros = 0.00
Broadband mean for target 1 = 1.00
Broadband SD for target 1 = 2.00
Transient amplitude for target 1 = 50.00
Number of frequencies at target 1 = 2
Here are the frequency and amplitude pairs for target 1:
200.00 10.00
20.00 20.00

Warm up takes 10000 time cycles

The simulation took 20.41 seconds.

74

Vita

Charles A. Jones was born on September 3, 1952, in Clarksburg, West Virginia.
He received his Bachelor of Arts degree in Mathematics from Drake University,
Des Moines, Iowa, in 1974. He received his Master of Arts degree in Mathemat-
ics from Dartmouth College, Hanover, New Hampshire, in 1976 and his Doctor
of Philosophy in Mathematics from Dartmouth College in 1978. He has been
employed by Grinnell College, Grinnell, Iowa, since 1980, first as an Assistant

Professor of Mathematics, then as an Associate Professor of Mathematics.

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES
Form Approved @

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

10n of 1nformation 1y estimated 10 average | hour per response, including the time 107 reviewIng INStructions, searching #xisting data sousiss
eded, and completing and reviewing the coliection of information Send comments regarding this burden estimate 07 any Other aspect &t th s

eadquarters Services, Directorate for intormation Operations and Reparty 12°% etterson
d Budget. Paperwork Reduction Progect (0704-0188). washington. OC 205C3

Public reporting bueden for thi collect
gathering and maintaining the data ne
collection of inlarmation, inciuding suggestions for reducing this burden to Washington +
Davis Highway, Suste 1204, Arhington., vA 22202-4302 and to ths Othice 21 Management an

1. AGENCY USE ONLY (Leave blank) [2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October, 1994 Technical ®
5. FUNDING NUMBERS

4. TITLE AND SUBTITLE
Simulating a Multi-target Acoustic Array on the
Intel Paragon

6. AUTHOR(S) N00014-93-1-0527

N00014-92-J-1303

Charles A. Jones]
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Center for Computational Statistics TR no_ 108 ‘;

George Mason University
Fairfax, VA 22030

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Degartment of the Nav¥
Office of the Chief of Naval Research °

Mathematical Sciences Division
800 N. Quincy Street Code 1111SP

Arlington, VA 22217-5000
11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Navy
position, policy, or decision, unless so designated by other documentation. ®

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200words) This thesis is built around a parallel programming project
which simulates the recordings of a linear array of hydrophones in the presence of se-
veral sources of acoustic signals (targets). Simulation of multi-target data with
appropriate modeling of multipath, path refraction, and local and distant noise source
is a useful and relatively sophisticated modeling chore. The signal suites include
ultiple frequency narrow band signals, broad-band flow noise, and randomly generated
transient signals. The noise suites include coherent and incoherent Gaussian noise,
impulsive noise, and continental shelf reverberation.This project is of interest from
parallel programming viewpoint because it uses the Paragon a true Multiple Intstruc-
tion Multiple Data (MIMD) machine with three types of nodes: 1)a Manager node, 2)tar-
et nodes, and 3)Hydrophone nodes. The target nodes are reponsible for generating the.
ignal suites, transient noise, and the coherent noise. The hydrophone nodes are re-
ponsible for calculation of multipath, refraction and time delay as well as adding th
local incoherent noise suite. While this simulation can be used as a stand-alone appli
ation, it also will form the foundation for a much larger, more sophisticated simula-
tion, namely producing a virtual Command Information Center (CIC). (continuation of thi

 abstract is in this technical report p. v) °
14. SUBJECT TERMS 15. NUMBER OF PAGES

82
16. PRICE CODE

parallel simulation, ocean noise model, target nodes
hydrophone nodes ’

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE -OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL o

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89"
Drpers ad e ANSH Rra 220 0w

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operstions and Reports. 1215 Jetferson :
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 10 the Office of Management and Budget, Paperwork Reduction Project (0704-0 188), washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October, 1994 Technical
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Simulating a Multi-target Acoustic Array on the Intel .
Paragon DAAL03-91-G-0039
6 AUTHOR(S) DAAHO4~-94~-G-0267

Charles A. Jones

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER :

Center for Computational Statistics
George Mason University TR no.108
Fairfax, VA 22030

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
osition, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200words) This thesis is built around a parallel programming project
which simulates the recordings of a linear array of hydrophones in the presence of se-
veral sources of acoustic signals (targets). Simulation of multi-target data with
lappropriate modeling of multipath, path refraction, and local and distant noise sources
is a useful and relatively sophisticated modeling chore. The signal suites include
multiple frequency narrow band signals, broad-band flow noise, and randomly generated
transient signals. The noise suites include coherent and incoherent Gaussian noise,
impulsive noise, and continental shelf reverberation.This project is of interest from

| parallel programming viewpoint because it uses the Paragon a true Multiple Intstruc-

tion Multiple Data (MIMD) machine with three types of nodes: 1)a Manager node, 2)tar-
lget nodes, and 3)Hydrophone nodes. The target nodes are reponsible for generating the
signal suites, transient noise, and the coherent noise. The hydrophone nodes are re-
sponsible for calculation of multipath, refraction and time delay as well as adding the
local incoherent noise suite. While this simulation can be used as a stand-alone appli-
cation, it also will form the foundation for a much larger, more sophisticated simula-
tion, namely producing a virtual Command Information Center (CIC). (continuation of this
‘abstract is in this technical report p. v)

14. SUBJECT TERMS 15. NUMBER OF PAGES
parallel simulation, ocean noise model, target nodes 82
hydrophone nodes i 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298”(_Rleﬂv 2-89)

PRSI

